师资队伍
您的位置>>首页 > 师资队伍
师资队伍

袁洪君

基本情况
姓名: 袁洪君
性别:
职称: 教授
所在系别: 基础数学系
是否博导:
最高学历: 研究生
最高学位: 博士
Email:
详细情况
所在学科专业: 数学
所研究方向: 偏微分方程
教育经历: 1983/9–1987/7, 中山大学, 基础数学, 学士
1987/9–1989/7, 吉林大学, 基础数学, 硕士
1989/9–1992/7, 吉林大学, 基础数学, 博士
1993/9—1995/7 吉林大学, 物理学院, 博士后
工作经历: 1992/7-1994/9,吉林大学,数学学院,讲师
1994/9-1999/9,吉林大学,数学学院,副教授
1999/9-至今,吉林大学,数学学院,教授
科研项目: 1.教育部优秀青年教师教学与科研奖励基金项目,相变和图像处理等领域中的某些非线性扩散方程,2000—2004,25万元,已结题,主持。
2. 国家自然科学基金项目青年基金项目,10001015,图像处理中的非线性扩散模型,2001—2003,5.5万元,已结题,主持。
3.国家自然科学基金面上项目,10571072,流体动力学等领域中的具有退化性或奇异性的某些数学模型,2006—2008,25万元,已结题,主持。
4.国家重点基础研究发展计划973计划,数学与其它领域交叉的若干专题,2006—2011,26万元,已结题,参加。
5.国家自然科学基金面上项目,10971080 ,带有奇异性的某些流体动力学模型,2010~2012,25万元,已结题,主持。
6. 国家自然科学基金项目,11271153,流体力学领域中若干具有奇异性的数学模型,2013/1-2016/12,60万元,在研,主持。
学术论文: [1]Yuan Hongjun, Holder continuity of interfaces for the porous Medium equation with absorption, Communications in Partial Differential Equations, 1993, Vol.18(5/6), 965-976.
[2]Yuan Hongjun, The Cauchy problem for a quasilinear degenerate parabolic system, Nonlinear Analysis: TMA, 1994, Vol.23(2), 155-164.
[3]Yuan Hongjun, Finite velocity of the propagation of perturbations for general porous medium equations with strong degeneracy,Nonlinear Analysis: TMA, 1994, Vol.23(6), 721-729.
[4]袁洪君, 一类退缩抛物方程自由边界的正则性,数学年刊,1994,
Vol.15A(1), 89-97.
注:本文的英译文被转载于Chinese Journal of Contemporary Mathematics, 1994,Vol.15(1), 77-86.
[5]Zhao Junning and Yuan Hongjun, Uniqueness of the solutions of the porous medium equations with initial datum a measure: the fast diffusion case, Journal of Partial Differential Equations, 1994,Vol.7(2), 143-159.
[6]Yuan Hongjun, Extinction and positivity for the evolution p-Laplacian equation, Journal of Mathematics Analysis and Applications,1995, Vol.196, 754-763.
[7]赵俊宁和袁洪君,一类非线性双重退缩抛物方程的Cauchy问题,
数学年刊,1995,Vol.16A(2), 181-196.
[8]Wu Zhuoqun and Yuan Hongjun, Uniqueness of generalized solutions for a quasilinear degenerate parabolic system, Journal of Partial Differential Equations, 1995, Vol.8(1), 89-96.
[9]袁洪君, 一类非线性扩散方程的局部化条件,数学年刊,1996, Vol.17A(1), 47-58.
注:本文的英译文被转载于 Chinese Journal of Contemporary Mathematics, 1996,Vol.17(1), 45-58.
[10]Yuan Hongjun, Extinction and positivity for the non-Newtonian
polytropic filtration equation, Journal of Partial Differential Equations, 1996, Vol.9(2), 169-176.
[11]Yuan Hongjun, Existence and nonexistence of interfaces of weak solutions for a nonlinear degenerate parabolic system, Journal of Partial Differential Equations, 1996, Vol.9(2), 177-185.
[12]Wu Zhuoqun, Yuan Hongjun and Yin Jingxue, Some properties of solutions for a system of dynamics of biological groups,
Communications in Partial Differential Equations, 1997, Vol.22(9/10), 1389-1403.
[13]Yuan Hongjun, Existence and uniqueness of BV solutions for a
conservation law withσ-finite Borel measures as initial conditions, Journal of Differential Equations, 1998, Vol. 146, 90-120.
[14]Yuan Hongjun, Source-type solutions of a singular conservation
law with absorption, Nonlinear Analysis: TMA, 1998, Vol.32(4), 467-492.
[15]Yuan Hongjun, The Cauchy problem for a singular conservation
law with measures as initial conditions, Journal of Mathematics
Analysis and Applications, 1998, Vol.225, 427-439.
[16]Lei Yutian, Wu Zhuoqun and Yuan Hongjun, Radial minimizers
of a Ginzburg-Landau functional, Electronic Journal of
Differential Equations, 1999, Vol.1999,No.30,1-21.
[17]Yuan Hongjun, Cauchy problem for degenerate quasilinear
hyperbolic equations with measures as initial value, Journal of Partial Differential Equations, 1999, Vol.12(2), 149-178.
[18]Yuan Hongjun, Instantaneous shrinking and localization of
functions and their applications,
Chinese Annals of Mathematics, 22B:3(2001),361-380.
[19]Yuan Hongjun and Zheng Xiaoyu, Existence and uniqueness
for a quasilinear hyperbolic equation with finite Borel measures as initial conditions, Journal of Mathematics Analysis and Applications, 277(2003),27-50.
[20]Yuan Hongjun, Lian Songzhe, Gao Wenjie,Xu Xiaojing,Cao Chunling, Extinction and positivity for the evolution p-Laplacian equation in , Nonlinear Analysis 60 (2005) 1085-1091.
[21]Hongjun Yuan, Xiaojing Xu, Wenjie Gao,Songzhe Lian,Chunling Cao, Extinction and positivity for the evolution p-Laplacian equation with initial value, J.Math.Anal.Appl.310 (2005) 328-337.
[22] Hongjun Yuan, Lining Tong, Xiaojing Xu, BV solutions for the Cauchy problem of a quasilinear hyperbolic equation with finite Borel measure and nonlinear source , J.Math.Anal.Appl.311 (2005) 715-735.
[23] 袁洪君,吴刚,以Dirac测度为源的拟线性退化抛物方程,数学年刊, 26A:4 (2005) 515-526.
[24]袁洪君,许孝精,以局部有限测度为初值的拟线性退化双曲方程BV
解的存在唯一性,数学年刊 26A:1 (2005) 39-48.
注:本文转载于Existence and uniqueness of BV solutions for a quasilinear degenerate hyperbolic equation with local finite mesures as initial conditions,Chinese Journal of Contemporary Mathematics, Vol.26(1),2005.
[25]Yuan, Hongjun; Xu Xiaojing, Some entropy inequalities for a quasilinear degenerate hyperbolic equation. J. Partial Differential Equations 18 (2005), no. 4, 289--303.
[26]Yuan Hongjun, Jin Yang, Existence and uniqueness of BV solutions for the porous medium equation with dirac measure as sources , Journal of Partial Differential Equations 18 (2005) 35-58.
[27]Xin Zhouping and Yuan Hongjun, Vacuum state for spherically symmetric solutions of the compressible Navier-Stokes equations, Journal of Hyperbolic Equations,Vol.3(3)(2006), 403--442.
[28]Lian Songzhe, Yuan Hongjun,Cao Chunling,Gao Wenjie and Xu Xiaojing,On the Cauchy problem for the evolution P-Laplacian equations with gradient term and source,Jounal of Differential Equations,235(2007),544-585.
[29]Yuan Hongjun and Chen Mingtao,Positive solutions for s class of P-Laplace problems involving quasi-linear and semi-linear terms,Journal of Mathematical Analysis and Applications,
330(2007), 1179-1193.
[30]Yuan Hongjun,Continuity of weak solutions for quasilinear parabolic equations with strong degeneracy, Chinese Annals of Mathematics, Vol.28B:4(2007),475-498.
[31]Yuan Hongjun,Lian Songzhe, Cao Chunling,Gao Wenjie and Xu Xiaojing, Extinction and positivity for a doubly nonlinear degenerate parabolic equation, Acta Mathematica Sinica, English Series, Vol.23(10)(2007),1751-1756.
[32]Lian Songzhe, Gao Wenjie,Cao Chunling and Yuan Hongjun, Study of the solutions to a model porous medium equation with variable exponent of nonlinearity,Journal of Mathematical Analysis and Applications,342(2008), 27-38.
着作教材: 合作编写教材《数学物理方程》一部,已由高等教育出版社出版 。
获奖情况: 1.1999 年获得教育部首届青年教师奖。
2.2000 年获得教育部科学技术进步一等奖。
3.2002 年获得吉林省第七届青年科技奖。
4.2006 年获得吉林省长春市政府特殊津贴。
5.吉林大学评为 2014 年“教书育人”先进个人。