师资队伍
您的位置>>首页 > 师资队伍
师资队伍

孙维鹏

基本情况
姓名: 孙维鹏
性别:
职称: 教授
所在系别: 金融数学系
最高学历: 研究生
最高学位: 博士
Email:
详细情况
所在学科专业: 数学
所研究方向: 金融数据技术与应用,非线性随机振动,转子动力学
讲授课程: 本科生:
概率论与数理统计
科学计算可视化
线性振动理论
弹性理论
塑性力学
控制力学
Simulink仿真与实习
研究生:
非线性振动理论
高等分析力学
教育经历: 2004.09-2007.06 吉林大学数学研究所 工程数学 博士
2001.09-2004.06 吉林大学数学研究所 固体力学 硕士
1997.09-2001.06 吉林大学数学学院 理论与应用力学 学士
工作经历: 2016.02-至今 吉林大学数学学院 教授
2015.08-2016.02 韩国庆熙大学机械工程学院 访问学者
2009.09-2016.02 吉林大学数学学院 副教授
2006.09-2009.09 吉林大学数学学院 讲师
2004.06-2006.09 吉林大学数学学院 助教
科研项目: [7] 600MW 汽轮发电机转子励端小轴稳定性研究,哈尔滨电机厂有限责任公司,2015.05-2015.12,负责人,完成;
[6] AP1000 屏蔽电机结构振动计算软件开发,哈尔滨工业大学,2014.02-2015.12,负责人,完成;
[5] 油气悬架系统优化设计与仿真软件开发,吉林大学基本科研业务费项目(科学前沿与交叉学科择优项目),2013.07-2015.07,负责人,完成;
[4] 间隙振动系统解析逼近解的构造,国家自然科学基金(数学天元青年基金),2010.01-2010.12,负责人,完成;
[3] 1000MW 水轮发电机机电耦合弯曲振动研究,哈尔滨电机厂有限责任公司,2009.08-2011.05,主要参加人,完成。
[2] 结构模型修改重分析的研究,国家自然科学基金(面上基金),2005.1-2007.12,完成(参加人);
[1] 结构拓扑修改重分析的预条件共轭梯度法,教育部博士点基金(20020183041),2003.1-2005.12,完成;(参加人)
学术论文: [21] Sun W.P., Sun Y.H., Yu Y.P., Wu B.S., A Comparison of the Improved and Classic Half-Power Band-width Methods in Estimating Damping for Multi-DOF Systems, Journal of Vibration Engineering & Technologies, 2016, Accepted.
[20] Yu Y.P.,Zhang H.Z.,Sun Y.H.,*Sun W.P.,Predicting dynamic response of large amplitude free vibrations of cantilever tapered beams on a nonlinear elastic foundation,Archive of Applied Mechanics,2016,10.1007 /s00419-016-1221-x.
[19] Chang S., Sun W.P., Cho S.G., Kim D., Vibration Control of Nuclear Power Plant Piping System Using Stockbridge Damper under Earthquakes, Science and Technology of Nuclear Installations, 2016, DOI:10.1155/2016/5014093.
[18] Sun W.P., Sun Y.H., Yu Y.P., Zheng S.P., Nonlinear vibration analysis of a type of tapered cantilever beams by using an analytical approximate method, Structural Engineering and Mechanics,2016, 59(1), 1-14.
[17] Sun W.P., Wu B.S., Lim C.W., Nonlinear oscillation of a charge in an electric field of two charged spheres, International Journal of Dynamics & Control, 2013, 1(2), 129-134.
[16] Wu B.S., Sun W.P., Li Z.G., Li Z.H., Circular whirling and stability due to unbalanced magnetic pull and eccentric force, Journal of Sound and Vibration, 2011, 330(21), 4949-4954. (Cited: 7)
[15] Ma Y.; Zhang Y. Y.; Wu, B. S.; Sun W. P.; Li, Z. G; Sun J. Q., Polyelectrolyte Multilayer Films for Building Energetic Walking Devices, Angewandte Chemie-International Edition, 2011, 50(28): 6254-6257. (Cited: 60)
[14] Wu B.S, Sun W.P., Construction of approximate analytical solutions to strongly nonlinear damped oscillators, Archive of Applied Mechanics, 2011, 81(8): 1017-1030. (Cited: 2)
[13] Sun W.P., Lim C.W., Wu B.S., Wang C., Analytical approximate solutions to oscillation of a current-carrying wire in a magnetic field , Nonlinear Analysis: Real World Applications, 2009, 10(3), 1882-1890. (Cited: 3)
[12] Lim C.W., Lai S.K., Wu B.S., Sun W.P., Yang Y., Wang C., Application of a modified Lindstedt–Poincaré method in coupled TDOF systems with quadratic nonlinearity and a constant external excitation, Archive of Applied Mechanics, 2009, 79(5), 411-431. (Cited: 7)
[11] 孙维鹏,吴柏生,非线性奇异振子的解析逼近解,振动与冲击,2009, 28(6): 14-16。
[10] Sun W.P., Wu B.S., Large amplitude free vibrations of a mass grounded by linear and nonlinear springs in series, Journal of Sound and Vibration, 2008, 314, 474-480. (Cited: 4)
[9] Sun W.P., Wu B.S., Accurate analytical approximate solutions to general strong nonlinear oscillators, Nonlinear Dynamics, 2008, 51, 277-287. (Cited: 5)
[8] Sun W.P., Wu B.S., Lim C.W., A modified Lindstedt–Poincaré method for strongly mixed-parity nonlinear oscillators, Journal of Computational and Nonlinear Dynamics, ASME, 2007,2(2), 141-145. (Cited: 11)
[7] Sun W.P., Wu B.S., Lim C.W., Approximate analytical solutions for oscillation of a mass attached to a stretched elastic wire, Journal of Sound and Vibration, 2007, 300 (3-5), 1042-1047. (Cited: 24)
[6] 李鹏松,孙维鹏,吴柏生,单摆大振幅振动的解析逼近解,振动与冲击,2008, 27(2): 72-74。
[5] Wu B.S., Sun W.P., Lim C.W., Analytical approximations to the double-well Duffing oscillator in large amplitude oscillations, Journal of Sound and Vibration, 2007, 307 (3-5), 953-960. (Cited: 7)
[4] Lim C.W., Lai S.K., Wu B.S., Sun W.P., Accurate approximation to the double sine-Gordon equation, International Journal of Engineering Science, 2007, 45(2-8), 258-271. (Cited: 3)
[3] Wu B.S., Sun W.P. , Lim C.W., An analytical approximate technique for a class of strongly non-linear oscillators, International Journal of Non-Linear Mechanics, 2006, 41 (6-7), 766-774. (Cited: 93)
[2] Lim C.W., Wu B.S., Sun W.P., Higher accuracy analytical approximations to the Duffing-harmonic oscillator, Journal of Sound and Vibration, 2006, 296 (4-5), 1039-1045. (Cited: 51)
[1] Wu B.S., Lim C.W., Sun W.P., Improved harmonic balance approach to periodic solutions of non-linear jerk equations, Physics Letters A, 2006, 354 (1-2), 95-100.(Cited:32)