当前位置: 首 页 - 师资队伍 - 教授 - 正文

刘长春

发表于: 2017-11-30   点击: 

基本情况
姓名: 刘长春
性别:
职称: 教授
所在系别: 应用数学系
是否博导:
最高学历: 博士研究生
最高学位: 博士
Email:




详细情况
所在学科专业: 数学
所研究方向: 偏微分方程
教育经历: 1990.09—1994.06   吉林大学数学系             本科生
1994.09—1997.06   吉林大学数学所             硕士研究生
1997.09—2001.06   吉林大学数学所             博士研究生
工作经历: 1997.07—1999.09   吉林大学数学学院            助教
1999.10—2004.12   吉林大学数学学院            讲师
2002.09—2004.06   南京师范大学数学系          博士后
2004.12—2008.09   吉林大学数学学院            副教授
2008.10—2009.10   日本东北大学                访问学者
2008.09—          吉林大学数学学院            教授
2009.01—          吉林大学数学学院            博士生导师
科研项目: 1)《一类非线性扩散方程》,自然科学基金天元青年基金, 2006.01-2006.12,负责人;
2)《电流变液中具随机项的抛物型方程》,吉林大学基本科研业务费,2010.1-2011.12, 负责人;
3) 教育部留学回国基金,2011.1-2013.12, 负责人
学术论文: [1] Yin Jingxue and Liu Changchun, Regularity of solutions of  the Cahn-Hilliard equation with concentration dependent mobility,  Nonlinear Analysis, TMA, 45(5)(2001), 543-554.
[2] Liu Changchun, Weak solutions for a viscous p-Laplacian equation, Electronic Journal of Differential Equations, (63) (2003),1-11.
[3] Gao Hongjun and Liu Changchun, Instability of traveling waves of the convective-diffusive Cahn-Hilliard equation, Chaos, Solitons and Fractals, 20(2)(2004), 253-258.
[4] Liu Changchun, Yin Jingxue and Gao Hongjun,  A generalized thin film equation, Chin. Ann. Math., 25 B(3)(2004), 347-358.
[5] Liu Changchun, Qi Yuanwei and Yin Jingxue, Regularity of solutions of the Cahn-Hilliard equation with non-constant mobility, Acta Mathematica Sinica, English Series, 22(4)(2006), 1139-1150.
[6] Liu Changchun, Regularity of solutions for a fourth order parabolic equation,  Bulletin of the Belgian Mathematical Society - Simon Stevin, 13(3)(2006), 527-535.
[7] Liu Changchun, Yin Jingxue and Zhou Juan, Existence of weak solutions for a generalized thin film equation, Communications on pure and Applied Analysis,
6(2)(2007), 465-480.
[8] Liu Changchun, A fourth order parabolic equation in two space dimensions, Mathematical Methods in the Applied Sciences, 30(15)(2007), 1913-1930.
[9] Liu Changchun, A fourth order parabolic equation with nonlinear principal part, Nonlinear Analysis, TMA.68(2)(2008), 393-401
[10] Liu Changchun, A fourth order nonlinear degenerate parabolic equation, Communications on Pure and Applied Analysis, 7(3)(2008), 617-630.
[11] Liu Changchun, On the Convective Cahn-Hilliard equation with degenerate mobility, Journal of Mathematical Analysis and Applications, 344(1)(2008), 124-144.
[12] Liu Changchun, Weak solutions for a class of metaparabolic equations, Applicable Analysis, 87(8)(2008), 887-900.
[13] Liu Changchun, Zhou Juan and Yin Jingxue, A note on large time behaviour of  solutions for viscous Cahn-Hilliard equation, Acta Mathematica Scientia, 29(5)(2009), 1216-1224.
[14] Lian Songzhe and Liu Changchun, On the existence and nonexistence of global solutions   for  the porous medium equation with strongly nonlinear sources in a cone, Archiv der Mathematik,    94(3)(2010), 245-253.
[15] Liu Changchun, A sixth order degenerate equation with the higher order p-Laplacian operator, Mathematica Slovaca,60(6)(2010),847-864.
[16] Liu Changchun, Qualitative properties for a sixth-order thin film equation, Mathematical Modelling and Analysis, 15(4)(2010), 457-471.
[17] Liu Changchun and Tian Yumei, Weak solutions for a sixth-order thin film equation, Rocky Mountain Journal of Mathematics,41(5)(2011),1547-1565.
[18]Liu Changchun, Critical exponent  for a  quasilinear  parabolic equation with inhomogeneous density in a cone, Monatshefte für Mathematik, 165(2)(2012), 237-249.

上一篇: 王春朋

下一篇: 董志山