当前位置: 首 页 - 师资队伍 - 计算数学系 - 正文

陶詹晶

发表于: 2020-05-29   点击: 



基本情况

姓名:

陶詹晶


  

性别:


职称:

副教授

所在系别:

计算数学

是否博导:

最高学历:

博士研究生毕业

最高学位:

博士

邮箱:

zjtao@jlu.edu.cn




研究方向:

偏微分方程数值解,双曲型方程的高精度数值格式,计算流体力学,自适应稀疏网格方法

教育经历:

2012.09-2016.07,博士,计算数学,厦门大学
2008.09-2011.07,硕士,计算数学,南昌航空大学
2004.09-2008.07,学士,信息与计算科学,南昌航空大学

工作经历:

2019.09-至今,副教授,吉林大学数学学院
2016.08-2019.08,博士后,美国密歇根州立大学数学系
2014.01-2014.07,学术访问,美国伦斯勒理工学院数学科学系

科研项目:

[1] 高精度保结构中心型HWENO数值方法研究,2021.01-2023.12,国家自然科学基金青年项目,负责人.

[2] 双曲守恒律及相关问题高精度数值方法研究,2016.01-2019.12,国家自然科学基金面上项目,参加
[3] 铀矿生物堆浸的数学模型及其算法,2014.09-2016.05,厦门大学基础创新科研基金(研究生项目),参加
[4] 数值积分的几类高精度数值算法研究, 2008.09-2010.06,南昌航空大学研究生创新基金项目,负责人

学术论文:


[1] Z. Tao, J. Zhang, J. Zhu, J. Qiu, High-order multi-resolution central Hermite WENO schemes for hyperbolic conservation laws, Journal of Scientific Computing, 2024, 99: 40.

[2] S. Cui, Z. Tao, J. Zhu, A new fifth-order finite volume central WENO scheme for hyperbolic conservation laws on staggered meshes, Advances in Applied Mathematics and Mechanics, 2022, 14(5): 1059-1086.

[3] S. Cui, Z. Tao, J. Zhu, New finite difference unequal-sized Hermite WENO scheme for Navier-Stokes equations, Computers and Mathematics with Applications, 2022, 128: 273–284.

[4] J. Huang, Y. Liu, Y. Liu, Z. Tao, Y. Cheng, A class of adaptive multiresolution ultra-weak discontinuous Galerkin methods for some nonlinear dispersive wave equations, SIAM Journal on Scientific Computing, 2022, 44(2): A745-A769.

[5] Z. Tao, J. Huang, Y. Liu, W. Guo, Y. Cheng, An adaptive multiresolution ultra-weak discontinuous Galerkin method for nonlinear Schrodinger equations, Communications on Applied Mathematics and Computation 2022, 4: 60–83.

[6] W. Guo, J. Huang, Z. Tao, Y. Cheng, An adaptive sparse grid local discontinuous Galerkin method for Hamilton-Jacobi equations in high dimensions, Journal of Computational Physics, 2021, 436: 110294.

[7] Z. Tao, Y. Jiang, Y. Cheng, An adaptive high-order piecewise polynomial based sparse grid collocation method with applications, Journal of Computational Physics, 2021, 433: 109770.

[8] J. Huang, Y. Liu, W.Guo, Z. Tao, Y. Cheng, An adaptive multiresolution interior penalty discontinuous Galerkin method for wave equations in second order form, Journal of Scientific Computing, 2020, 85: 13.

[9] Z. Tao, A. Chen, M. Zhang, Y. Cheng, Sparse grid central discontinuous Galerkin method for linear hyperbolic systems in high dimensions, SIAM Journal on Scientific Computing, 2019, 41(3): A1626-A1651.

[10] Z. Tao, W. Guo, Y. Cheng, Sparse grid discontinuous Galerkin methods for the Vlasov-Maxwell system, Journal of Computational Physics: X, 2019, 3: 100022.

[11] Z. Tao, J. Qiu, Dimension-by-dimension moment-based central Hermite WENO schemes for directly solving Hamilton-Jacobi equations, Advances in Computational Mathematics, 2017, 43: 1023-1058.

[12] Z. Tao, F. Li, J. Qiu, High-order central Hermite WENO schemes: Dimension-by-dimension moment-based reconstructions, Journal of Computational Physics, 2016, 318: 222-251.

[13] Z. Tao, F. Li, J. Qiu, High-order central Hermite WENO schemes on staggered meshes for hyperbolic conservation laws, Journal of Computational Physics, 2015, 281: 148-176.

获奖情况:

[1] 吉林大学“唐敖庆学者”青年学者 (2021)

[2] 吉林大学励新优秀青年教师培养计划 (2020)

[3] 国家天元数学东北中心优秀青年学者 (2020)


上一篇: 王瑞姝

下一篇: 贾继伟