学术论文: |
*加粗为数学学院认定的96篇高水平期刊 24. L. Wang, Mingyan Zhang, and Q. Zhang, Fully nonconforming finite elements for singularly perturbed quadcurl problem on cubical meshes, 2025, IMA J. Numer. Anal., drae107.
23. L. Wang, H. Li, Q. Zhang, and Z. Zhang. H(curl2)-conforming triangular spectral element method for quad-curl problems, J. Comput. Appl. Math., Vol. 459, 2025, 116362.
22. K. Hu, T. Lin∗, and Q. Zhang. Distributional Hessian and divdiv complexes on triangulation and coho-mology, SIAM J. Appl. Algebra Geom., Vol. 9, Iss. 1, 2025.
21. H. Guo, Mingyan Zhang∗, Q. Zhang, and Z. Zhang. Unfitted finite element method for the quad-curl interface problem, Adv. Comput. Math., Vol. 51, No. 3, 2025.
20. S. Su, S. Tong∗, Mingyan Zhang∗, and Q. Zhang. A parameter-free and locking-free enriched Galerkin method of arbitrary order for linear elasticity, Comput. Methods Appl. Mech. Eng., Vol. 432, Part A, 2024, 117375.
19. H. Peng, Q. Zhai, Q. Zhang, and Z. Zhao∗, A locking-free mixed enriched Galerkin method of arbitrary order for linear elasticity using the stress-displacement formulation, Appl. Math. Lett., Vol. 58, 2024,109237.
18. K. Hu, J. Sun, and Q. Zhang. Quadratic and cubic Lagrange finite elements for mixed Laplace eigenvalue problems on criss-cross meshes, Res. Appl. Math., Vol. 23, 2024, 100480.
17. Q. Zhang, Min Zhang, and Z. Zhang, Nonconforming finite elements for the Brinkman and −curl∆curl problems on cubical meshes, Commun. Comput. Phys., Vol. 34, No. 5, 2023, 1332-1360.
16. L. Wang, Q. Zhang, and Z. Zhang, Superconvergence analysis of curlcurl-conforming elements on rect- angular meshes, J. Sci. Comput., Vol. 95, No. 62, 2023, 1–23.
15. J. Hu, K. Hu, and Q. Zhang, Partially discontinuous nodal finite elements for H(curl) and H(div), Comput. Methods Appl. Math., Vol. 22, No. 3, 2022, 613–629.
14. Q. Zhang and Z. Zhang, Three families of graddiv-conforming finite elements, Numer. Math., Vol. 152, No. 3, 2022, 701–724.
13. K. Hu, Q. Zhang, J. Han, L. Wang, and Z. Zhang, Spurious solutions for high order curl problems, IMA J. Numer. Anal., 2022, drac024.
12. L. Wang, Q. Zhang, J. Sun, and Z. Zhang, A priori and a posterior error estimations of the quad-curl eigenvalue problem, ESAIM: M2AN, Vol. 56, No. 3, 2022, 1027–1051.
11. K. Hu, Q. Zhang, and Z. Zhang, A family of finite element Stokes complexes in three dimensions, SIAM J. Numer. Anal., Vol. 60, No. 1, 2022, 222–243.
10. K. Hu, Q. Zhang, and Z. Zhang, Simple curl-curl-conforming finite elements in two dimensions, SIAM J. Sci. Comput., Vol. 42, No. 6, 2020, A3859–A3877.
9. H. Dong, M. Wang, D. Yin, and Q. Zhang, High-order local absorbing boundary conditions for fractional evolution equations on unbounded strips, Adv. Appl. Math. Mech, Vol. 12, No. 3, 2020, 664–693.
8. Q. Zhang and Z. Zhang, A family of curl-curl-conforming elements on tetrahedral meshes, CSIAM Trans. Appl. Math., Vol. 1, No. 4, 2019, 639–663.
7. Q. Zhang, L. Wang, and Z. Zhang, H(curl2)-conforming finite elements in 2 dimensions and applications to the quad-curl problem, SIAM J. Sci. Comput., Vol. 41, No. 3, 2019, A1527–A1547.
6. L. Wang, Q. Zhang, and Z. Zhang, Superconvergence analysis for arbitrary order rectangular and cubic edge elements for time-harmonic Maxwell’s equation, J. Sci. Comput., Vol. 78, No. 2, 2019, 1207-1230.
5. J. Sun, Q. Zhang, and Z. Zhang, A curl-conforming weak Galerkin method for the quad-curl problem, BIT Numer. Math., Vol. 59, 2019, 1093–1114.
4. Q. Zhang, J. Zhang, S. Jiang, and Z. Zhang, Numerical solution to a linearized time fractional KdV equation on unbounded domains, Math. Comp., Vol. 87, No. 310, 2018, 693–719.
3. C. Zhou, Y. Zou, S. Chai, Q. Zhang, and H. Zhu, Weak Galerkin mixed finite element method for heat equation, Appl. Numer. Math., Vol. 123, 2018, 180–199.
2. S. Jiang, J. Zhang, Q. Zhang, and Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., Vol. 21, No. 3, 2017, 650–678. Citation: 537
1. Q. Zhang and R. Zhang, A weak Galerkin mixed finite element method for second-order elliptic equations, J. Comput. Math., Vol. 34, No. 5, 2016, 532–548. |