当前位置: 首 页 - 师资队伍 - 计算数学系 - 正文

张倩

发表于: 2025-09-18   点击: 

       基本情况

姓名:

张倩


性别:

职称:

教授,唐敖庆学者领军教授A岗,国家青年人才

所在系别:

计算数学

是否博导:

最高学历:

博士研究生

最高学位:

博士

电话:


Email:

qzhang25@jlu.edu.cn




详细情况

所在学科专业:

计算数学

所研究方向:

偏微分方程数值解

讲授课程:

暂无

教育经历:

2018年8月 – 2021年8月 韦恩州立大学(Wayne State University)数学系,博士

2015年8月 – 2018年6月 中国工程物理研究院,北京计算科学研究中心,应用与计算数学部, 硕士

2011年8月 – 2015年6月 吉林大学数学学院,本科

工作经历:

2025年6月 – 至今,吉林大学数学学院,教授

2021年8月 – 2025年6月,密歇根理工大学(Michigan Technological University)数学科学系, 助理教授

科研项目:

Simons Foundation, Travel Support for Mathematicians, PI, MPS-TSM-00007606, Sep. 2024

学术论文:

*加粗为数学学院认定的96篇高水平期刊

24. L. Wang, Mingyan Zhang, and Q. Zhang, Fully nonconforming finite elements for singularly perturbed quadcurl problem on cubical meshes, 2025, IMA J. Numer. Anal., drae107.


23. L. Wang, H. Li, Q. Zhang, and Z. Zhang. H(curl2)-conforming triangular spectral element method for quad-curl problems, J. Comput. Appl. Math., Vol. 459, 2025, 116362.


22. K. Hu, T. Lin∗, and Q. Zhang. Distributional Hessian and divdiv complexes on triangulation and coho-mology, SIAM J. Appl. Algebra Geom., Vol. 9, Iss. 1, 2025.


21. H. Guo, Mingyan Zhang∗, Q. Zhang, and Z. Zhang. Unfitted finite element method for the quad-curl interface problem, Adv. Comput. Math., Vol. 51, No. 3, 2025.


20. S. Su, S. Tong∗, Mingyan Zhang∗, and Q. Zhang. A parameter-free and locking-free enriched Galerkin method of arbitrary order for linear elasticity, Comput. Methods Appl. Mech. Eng., Vol. 432, Part A, 2024, 117375.


19. H. Peng, Q. Zhai, Q. Zhang, and Z. Zhao∗, A locking-free mixed enriched Galerkin method of arbitrary order for linear elasticity using the stress-displacement formulation, Appl. Math. Lett., Vol. 58, 2024,109237.


18. K. Hu, J. Sun, and Q. Zhang. Quadratic and cubic Lagrange finite elements for mixed Laplace eigenvalue problems on criss-cross meshes, Res. Appl. Math., Vol. 23, 2024, 100480.


17. Q. Zhang, Min Zhang, and Z. Zhang, Nonconforming finite elements for the Brinkman and −curl∆curl problems on cubical meshes, Commun. Comput. Phys., Vol. 34, No. 5, 2023, 1332-1360.


16. L. Wang, Q. Zhang, and Z. Zhang, Superconvergence analysis of curlcurl-conforming elements on rect- angular meshes, J. Sci. Comput., Vol. 95, No. 62, 2023, 1–23. 


15. J. Hu, K. Hu, and Q. Zhang, Partially discontinuous nodal finite elements for H(curl) and H(div), Comput. Methods Appl. Math., Vol. 22, No. 3, 2022, 613–629. 


14. Q. Zhang and Z. Zhang, Three families of graddiv-conforming finite elements, Numer. Math., Vol. 152, No. 3, 2022, 701–724.


13. K. Hu, Q. Zhang, J. Han, L. Wang, and Z. Zhang, Spurious solutions for high order curl problems, IMA J. Numer. Anal., 2022, drac024.


12. L. Wang, Q. Zhang, J. Sun, and Z. Zhang, A priori and a posterior error estimations of the quad-curl eigenvalue problem, ESAIM: M2AN, Vol. 56, No. 3, 2022, 1027–1051.


11. K. Hu, Q. Zhang, and Z. Zhang, A family of finite element Stokes complexes in three dimensions, SIAM J. Numer. Anal., Vol. 60, No. 1, 2022, 222–243.


10. K. Hu, Q. Zhang, and Z. Zhang, Simple curl-curl-conforming finite elements in two dimensions, SIAM J. Sci. Comput., Vol. 42, No. 6, 2020, A3859–A3877.


9. H. Dong, M. Wang, D. Yin, and Q. Zhang, High-order local absorbing boundary conditions for fractional evolution equations on unbounded strips, Adv. Appl. Math. Mech, Vol. 12, No. 3, 2020, 664–693.


8. Q. Zhang and Z. Zhang, A family of curl-curl-conforming elements on tetrahedral meshes, CSIAM Trans. Appl. Math., Vol. 1, No. 4, 2019, 639–663.


7. Q. Zhang, L. Wang, and Z. Zhang, H(curl2)-conforming finite elements in 2 dimensions and applications to the quad-curl problem, SIAM J. Sci. Comput., Vol. 41, No. 3, 2019, A1527–A1547.


6. L. Wang, Q. Zhang, and Z. Zhang, Superconvergence analysis for arbitrary order rectangular and cubic edge elements for time-harmonic Maxwell’s equation, J. Sci. Comput., Vol. 78, No. 2, 2019, 1207-1230.


5. J. Sun, Q. Zhang, and Z. Zhang, A curl-conforming weak Galerkin method for the quad-curl problem, BIT Numer. Math., Vol. 59, 2019, 1093–1114.


4. Q. Zhang, J. Zhang, S. Jiang, and Z. Zhang, Numerical solution to a linearized time fractional KdV equation on unbounded domains, Math. Comp., Vol. 87, No. 310, 2018, 693–719.


3. C. Zhou, Y. Zou, S. Chai, Q. Zhang, and H. Zhu, Weak Galerkin mixed finite element method for heat equation, Appl. Numer. Math., Vol. 123, 2018, 180–199.


2. S. Jiang, J. Zhang, Q. Zhang, and Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., Vol. 21, No. 3, 2017, 650–678. Citation: 537


1. Q. Zhang and R. Zhang, A weak Galerkin mixed finite element method for second-order elliptic equations, J. Comput. Math., Vol. 34, No. 5, 2016, 532–548.

著作教材:


获奖情况:

杰出研究奖,密西根理工大学数学科学系, 2022

杰出研究生奖,韦恩州立大学数学系, 2021

Thomas C. Rumble 大学研究基金, 韦恩州立大学研究生院, 2020 – 2021

京津冀计算数学优秀青年论文,京津冀计算数学学会,2017

社会兼职:




上一篇: 张然

下一篇: 封玥