当前位置: 首 页 - 科学研究 - 学术报告 - 正文

数学学院、所2025年系列学术活动(第027场):李敬宇 教授 东北师范大学

发表于: 2025-05-12   点击: 

报告题目:Boundary spike-layer solutions to the multi-dimensional singular Keller-Segel model

报告人:李敬宇 教授 东北师范大学

报告时间:2025年5月22日 13:30-14:30

报告地点:数学楼第一报告厅

校内联系人:刘长春 liucc@jlu.edu.cn


报告摘要:

We are interested in the boundary-layer solutions to the singular Keller-Segel model in a multi-dimensional domain describing the bacteria consuming nutrient, where the bacteria satisfies zero-flux boundary condition and the nutrient satisfies inhomogeneous Dirichlet boundary condition. The steady-state problem is reduced to a scalar Dirichlet nonlocal elliptic problem with singularity. Studying this nonlocal problem, we obtain the unique steady-state solution which possesses a boundary spike-layer profile as the nutrient diffusion coefficient tends to zero. When the domain is radially symmetric, we find the explicit expansion for the slope of boundary-layer profiles at the boundary and boundary-layer thickness in terms of the radius. Furthermore, we establish the nonlinear exponential stability of the boundary-layer steady-state solution for the radially symmetric domain. This is a joint work with J. Carrillo, Zhi-An Wang and Wen Yang.


报告人简介:

李敬宇教授,东北师范大学数学与统计学院教授,博士生导师,主要研究生物趋化方程及流体力学方程中的稳定性与不稳定性现象;在Proc. London Math. Soc., SIAM J. Math. Anal., Math. Models Methods Appl. Sci., J. Differential Equations等高水平杂志上发表几十篇论文,多次获得国家自然科学基金面上项目和省部级项目的资助。