报告题目:Multilinear Low-Rank Vector Autoregressive Modeling via Tensor Decomposition
报 告 人:练恒副教授 香港城市大学
报告时间:2019年10月21日上午9:00-10:00
报告地点:数学楼第二报告厅
报告摘要:
The VAR model involves a large number of parameters so it can suffer from the curse of dimensionality for high-dimensional time series data. The reduced-rank coefficient model can alleviate the problem but the low-rank structure along the time direction for time series models has never been considered. We rearrange the parameters in the VAR model to a tensor form, and propose a multilinear low-rank VAR model via tensor decomposition that effectively exploits the temporal and cross-sectional low-rank structure. Effectiveness of the methods is demonstrated on simulated and real data.
报告人简介:
练恒,现任香港城市大学数学系副教授,于2000年在中国科学技术大学获得数学和计算机学士学位,2007年在美国布朗大学获得计算机硕士,经济学硕士和应用数学博士学位。研究方向包括高维数据分析、函数数据分析、机器学习等。在Journal of the Royal Statistical Society Series B、Journal of the American Statistical Association等国际期刊上发表高水平学术论文30多篇。