报告题目:A non-marginal variable screening method for the varying coefficient Cox model
报 告 人:孙六全 研究员 中科院
报告时间:2019年10月24日上午10:00-11:00
报告地点:数学楼第二报告厅
报告摘要:
Varying coefficient models have been become a very popular statistical tool for describing the dynamic effects of covariates on the response. However, some challenging works arise when we analyze the ultrahigh-dimensional varying coefficient models such as the estimation and the model recovery. In this article, we develop a new variable screening method for the varying coefficient Cox model. The new screening method works via an estimate of the local partial likelihood with a sparsity constraint, which combines the kernel smoothing and group learning methods. An iterative groupwise hard-thresholding algorithm is developed, and the sure screening property of the proposed method is established for ultrahigh dimensional settings. Simulation studies are conducted to evaluate the finite sample performances of the proposed procedure. An ovarian cancer data example is provided for illustration.
报告人简介:
孙六全是中国科学院数学与系统科学研究院研究员、博士生导师,中科院数学院统计中心副主任。中科院数学院十大突出科研成果奖获得者,部分工作入选为中科院数学院十大重要科研进展。先后主持或主要参加了973重大项目,国家自然科学基金重大项目、重点项目和面上项目等18项。孙六全教授长期从事各种复杂删失数据的理论与方法研究,特别是生物和医学数据的建模与统计推断,包括复杂纵向数据、复发事件数据以及各种不完全删失数据下统计分析,提出了一系列新的建模方法和估计方法,获得了许多深刻的重要成果。在国内外核心刊物发表学术论文130余篇,包括统计顶级杂志JASA和Biometrika 8篇。已被SCI收录90多篇,EI收录9篇,美国Math. Review收录110余篇。论文被他人引用400多次,其中被SCI他引300多次,被Springer出版三本英文专著他引20多次。在国际学术会议上多次作特邀报告。