当前位置: 首 页 - 旧站栏目 - 基地建设 - 师资队伍 - 正文

教授简介――张树功

发表于: 2006-09-03   点击: 

一、自然情况

姓    名:  张树功

籍    贯:  内蒙古赤峰市

出生年月:  1958年2月

电子信箱:  sgzh@mail.jlu.edu.cn

二、大学以上学历

1978.02~1982.02     东北工学院数学系            学生

    1982.02~1984.12     吉林大学数学所          硕士研究生

 1991.09~1993.12     吉林大学计算中心           博士研究生

三、学术任职

1984.12~1991.09     东北工学院数学系            助教、讲师

1993.12~1996.01     吉林大学计算机科学系    博士后

1996.01~1999.12     吉林大学数学学院            副教授

2000.01~现在        吉林大学数学学院            教    授

2001.06~现在        吉林大学数学学院            博士生导师

四、教学与科研情况

主要从事符号计算与生物识别技术的教学与研究工作,于国内外学术刊物发表论文30余篇。

1. 教材编写:

1) 《数值分析》,东北工学院出版社,1990,沈阳,参编;

2)  《计算机代数基础》,吉林大学出版社,1997 长春,主编;

3)  《计算机代数基础》,科学出版社,2005, 北京 主编。

2. 课程讲授:

1)  《计算机代数》,数学学院高年级本科生选修;

2)  《计算交换代数与代数几何》,数学所计算专业研究生选修。

3. 科研项目情况

曾经承担“定理机器证明及其应用”、“数学机械化与自动推理平台”等国家重大关键项目的子课题;作为主要参加者参加过多项国家自然科学基金、博士点基金的研究工作。在研项目为:

1)   973项目子课题《 数学机械化方法及其在信息领域中的应用-核心算法》,

编号:2004CB318000;2004.10-2009.10。

2) 自然科学基金项目《CAGD中若干基本问题的代数几何理论与可行算法》,

编号:10471055;2005.01-2007.12。

4. 发表论文目录

  1. 1.A new type of reduced dimension path following methods. J. Comput. Math. 10 (1992), no. 3, 263--272. (Reviewer: G. J. Miel) 65H20
  2. 2.Reducing the multivariate polynomial system to eigenvalue problem. Northeast. Math. J. 8 (1992), no. 3, 253--256. (Reviewer: José A. Hermida-Alonso) 15A18 (13F20)
  3. 3.The eigenvalue problem equivalent to multivariate polynomial system, Numerical Algebra: Proceedings of '92 Shanghai International Numerical algebra and its Applications Conference(1992, Shanghai), 62-65.
  4. 4.The Eigenvalue Problem Equivalent to Multivariate Polynomial System,  Numer. Math. J. Chinese Universities(English Series), Vol.2 (1993), No.2, 234-241,1995.
  5. 5.The Eigenvalue Method for Solving Multipolynomial System, Lecture Notes in Num. Appl. Anal., 14, 1-8(1995), edited by H. Fujita and M. Yamaguti, Kinokuniya, Tokyo.
  6. 6.The Structure of Solutions to Algebraic System and Matrices in Eigenvalue Method, Northeast. Math. J., Vol. 11, No. 4 (1995), 383-386.
  7. 7.Converting Multipolynomial systems into eigenproblems via well arranged bases, proceedings of First Asian Technology conference in Mathematics, Singapore(Dec.,1995), Editors: D. T. Le, V. Saito, B. Teissier, World Scientific(1995).
  8. 8.The Structure of Solutions to Algebraic System and Matrices in Eigenvalue Method, Proceedings of Asian Symposium on Computer Mathematics, 43-53, edited by He Shi and H. Kobayashi, Scientists Incorporated, Tokyo, 1995.
  9. 9.Eigenvalue Methods for Computing High-dimensional Varieties, Northeast. Math. J., Vol. 12, No. 1 (1996), 1-4.
  10. 10.Clifford Algebra and Mechanical Geometry Theorem Proving, Proceedings of Asian Symposium on Computer Mathematics, edited by Li Zhibin(1998),49-63.
  11. 11.A Clifford algebraic method for geometric reasoning. In: Proc. 2nd ADG(Beijing, China, August 1-3,1998), in the Lecture Notes in Artificial Intelligence series (1669), Springer-Verlag(1998).
  12. 12.The Multiplicity of Zeros of Algebraic System in Eigenvalue Method, J of Computer Science and Technology, Vol.14, No.5(1999),510-517.
  13. 13.Hyper finite Interpolation, Wu’s Method and Blending of Implicit Algebraic Surfaces, J of Computer Science and Technology, Vol.14, No.5 (1999), 518-529.
  14. 14.Minkowskian空间的Clifford代数表示,《数学与数学机械化》,林东岱、李文林、虞言林编,山东教育出版社(2001)
  15. 15.The eigenvalue approach to polynomial system solving. Mathematics mechanization and applications, 75--93, Academic Press, San Diego, CA, 2000. 65H05 (03B35 68W30) (2000) 。
  16. 16.Zhang Shuong, Dong Tian and Feng Guochen, Algebraic Interpolation on Manifold and the Instability of the Interpolation Nodes,Northeast. Math. J.,19(2),107-110,2003。
  17. 17.厉玉蓉,雷娜,张树功,用最低次曲面光滑拼接多个二次曲面的判别条件,吉林大学学报(理学版)41(2), 157-158,2003。
  18. 18.董天,张树功,非均匀网格点上的插值基,吉林大学学报(理学版)41(2), 159-161,2003。
  19. 19.Zhang Shugong, Li Yurong and Lei Na, Existence Criteria of Blending Surfaces of Three Quadric Surfaces―Wu Wen-tsun’s Formulae, Northeast. Math. J.,19(3),201-204,2003。
  20. 20.Feng , G.C.et al, Blending Several  Implicit Algebraic Surface with Ruled Surfaces, AMS/IP Studies in Advanced mathmatics, Vol.34(2003), p89-111.
  21. 21.Li Yurong,Lei Na & Zhang Shugong, Constructive Theory and  Algorithm forBlending Several Implicit Algebraic Surfaces ,In: Computer Algebra and Geometric Algebra with Application, H. Li, P. Olver and G. Sommer (eds), Springer, Berlin, 2005.  Lecture Notes in Computer Science,Volume 31 of 2065 ,83-96。
  22. 22.李庆春,张树功,矩阵对角占优性的推广及应用,吉林大学学报(理学版)  2005; 第43卷 (第5期):   561-566。
  23. 23.董天, 张树功, 冯果忱,代 数 流 形 上 的 插 值 问 题, 吉林大学学报(理学版)  2005; 第43卷 (第6期):   707-715。
  24. 24.Cai Shoufeng, Zhang Shugong, A Recursive algorithm on rational interpolation, Northeastern Mathematical Journal, Vol. 21,No.3,253-256.
  25. 25.Cai Shoufeng, Zhang Shugong, The algebraic method of rational interpolation, Numerical mathematics A J of Chinese Universities, Vol.14. No.4(2005), 375-382.
  26. 26.Na Lei, Shugong Zhang, Tian Dong, Guochen Feng, The Existence and Expression of Osculatory Rational Interpolation,Journal of Information and Computational Science,Volume 2 Number 3, September 2005, 493-500
  27. 27.Tian Dong, Shugong Zhang, Na Lei,Interpolation Basis for Nonuniform Rectangular Grid,Journal of Information and Computational Science,Volume 2 Number 4, December 2005, 671-680。