当前位置: 首 页 - 科学研究 - 学术报告 - 正文

Sino-Russian Mathematics Center-JLU Colloquium (2024-018)—Symplectic Morse Theory and Witten Deformation

发表于: 2024-08-04   点击: 

报告题目:Symplectic Morse Theory and Witten Deformation

报 告 人:Xiang Tang

所在单位:美国圣路易斯华盛顿大学

报告时间:2024年8月8日 9:00-11:00

报告地点:Zoom Id: 904 645 6677,Password: 2024

会议链接:

https://zoom.us/j/9046456677?pwd=Y2ZoRUhrdWUvR0w0YmVydGY1TVNwQT09&omn=89697485456


报告摘要: In this talk, we will introduce a Morse type cohomology for symplectic manifolds using gradient flows and integration of the symplectic form over spaces of gradient flow lines. We will study this symplectic Morse cohomology using the Witten deformation method. In particular, we will explain that the symplectic Morse cohomology is isomorphic to the cohomology of differential forms introduced by Tsai, Tseng, and Yau for symplectic manifolds. This talk is based on joint works with David Clausen and Li-Sheng Tseng.


报告人简介:唐翔,美国圣路易斯华盛顿大学数学系教授。北京大学数学学院2000届本科毕业生。2004年在美国加州大学Berkeley分校数学系取得博士学位。2023年当选AMS Fellow。