报告题目:Semiparametric spatial model for interval-censored data with time-varying covariate effects
报告人:张斌 教授 辛辛那提儿童医院
报告时间:2024年6月20日 15:00-16:00
报告地点:数学楼第2报告厅
校内联系人:杜明月 mingydu@jlu.edu.cn
报告摘要:Cox regression is one of the most commonly used methods in the analysis of interval-censored failure time data. In many practical studies, the covariate effects on the failure time may not be constant over time. Time-varying coefficients are therefore of great interest due to their flexibility in capturing the temporal covariate effects. To analyze spatially correlated interval-censored time-to-event data with time-varying covariate effects, a Bayesian approach with dynamic Cox regression model is proposed. The coefficient is estimated as a piecewise constant function and the number of jump points estimated from the data. A conditional autoregressive distribution is employed to model the spatial dependency. The posterior summaries are obtained via an efficient reversible jump Markov chain Monte Carlo algorithm. The properties of our method are illustrated by simulation studies as well as an application to smoking cessation data in southeast Minnesota.
报告人简介:张斌教授2002年本科毕业于中国科学技术大学数学系,2005-2009年就读于密苏里大学统计系并取得统计学博士学位。2009年至2012年受聘于阿拉巴马伯明翰大学生物统计系担任助理教授。2012年,张斌教授加入了辛辛那提儿童医院生物统计与流行病学系,并于2021年晋升教授。现任辛辛那提儿童医院、辛辛那提医学院放射学系统计中心主任。他的研究方向主要包括生存分析、医疗大数据、医学研究数据分析、临床试验、生信分析、贝叶斯方法等。在校求学与工作期间,张斌教授曾获得多个学校和国际的奖项,其中包括美国国家科学基金会和数理统计协会的青年科学家奖,并于2016年当选国际统计协会(ISI)会士。张斌教授主持或参与了多个美国国立卫生院NIH(如R01,U01,N01等大型研究项目)和其他研究机构(如盖茨基金会等)支持的研究项目。张教授是20个杂志的编委或审稿人;Komen Career Catalyst Research (CCR) Basic and Translational Grant、National Security Agency (NSA-AMS) Grant等近10个基金的专家评审;发表学术论文与专著170余篇。