当前位置: 首 页 - 科学研究 - 学术报告 - 正文

数学学院、所2024年系列学术活动(第142场)潘亿 IST Austria

发表于: 2024-12-02   点击: 

报告题目:Reducibility of quasi-periodic symplectic cocycles

报告人: 潘亿 IST Austria

报告时间:2024年12月03日(周二) 3:30pm

报告地点:腾讯会议:970-200-442 会议密码:1203


报告摘要:Reducibility of quasi-periodic cocyles valued in symplectic groups is related to the spectrum of discrete Schrödinger operators on strips. We will talk about a global reducibility result: given one parameter family of such cocycles, for almost every parameter, either the maximal Lyapunov exponent is positive, or the cocycle is almost conjugate to some precise model. The techniques include Kotani theory, KAM theory and in particular study of hyperbolicity of renormalization operator. This is a joint work with Artur Avila and Raphaël Krikorian.


报告人简介: 潘亿博士目前为IST Austria的博士后,曾于2023年在法国巴黎取得博士学位,师从Artur Avila和Raphaël Krikorian。主要研究兴趣为拟周期cocycle的可约性,重整化算子的双曲性,KAM理论。